Motion Integration Using Competitive Priors
نویسندگان
چکیده
Psychophysical experiments show that humans are better at perceiving rotation and expansion than translation [4][8]. These findings are inconsistent with standard models of motion integration which predict best performance for translation. To explain this discrepancy, our theory formulates motion perception at two levels of inference: we first perform model selection between the competing models (e.g. translation, rotation, and expansion) and then estimate the velocity using the selected model. We define novel prior models for smooth rotation and expansion using techniques similar to those in the slow-and-smooth model [23] (e.g. Green functions of differential operators). The theory gives good agreement with the trends observed in four human experiments.
منابع مشابه
Layered Motion Segmentation with a Competitive Recurrent Network
Using local motion information data such as that obtained from optical flow, we present a network for a multilayered segmentation into motion regions that are governed by affine motion patterns. Using an energy-based competitive multilayer architecture based on non-negative activations and multiplicative update rules, we show how the network can perform segmentation tasks that require a combina...
متن کاملModel selection and velocity estimation using novel priors for motion patterns
Psychophysical experiments show that humans are better at perceiving rotation and expansion than translation. These findings are inconsistent with standard models of motion integration which predict best performance for translation [6]. To explain this discrepancy, our theory formulates motion perception at two levels of inference: we first perform model selection between the competing models (...
متن کاملIntegration Scheme for SINS/GPS System Based on Vertical Channel Decomposition and In-Motion Alignment
Accurate alignment and vertical channel instability play an important role in the strap-down inertial navigation system (SINS), especially in the case that precise navigation has to be achieved over long periods of time. Due to poor initialization as well as the cumulative errors of low-cost inertial measurement units (IMUs), initial alignment is not sufficient to achieve required navigation ac...
متن کاملMotion Segmentation Using Inference in Dynamic Bayesian Networks
Existing formulations for optical flow estimation and image segmentation have used Bayesian Networks and Markov Random Field (MRF) priors to impose smoothness of segmentation. These approaches typically focus on estimation in a single time slice based on two consecutive images. We develop a motion segmentation framework for a continuous stream of images using inference in a corresponding Dynami...
متن کاملExpectation propagation for neural networks with sparsity-promoting priors
We propose a novel approach for nonlinear regression using a two-layer neural network (NN) model structure with sparsity-favoring hierarchical priors on the network weights. We present an expectation propagation (EP) approach for approximate integration over the posterior distribution of the weights, the hierarchical scale parameters of the priors, and the residual scale. Using a factorized pos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008